Features

- Optimized to handle nearly any type of resistive sensor bridges without external trim components
- Compensation of minimum 200 mV sensor offset independently from signal range
- Configurable input signal range with 16-step coarse analogue gain trimming; full scale span: 3.300mVpp
- Analogue gain up to 715
- Low noise input amplifier and 14-bit ADC for high resolution sensor signal acquisition
- Configurable digital low pass filter (0.13..4.7 kHz) allows excellent SNR at smallest input span
- Precise compensation of sensor nonlinearity and thermal drift in sensor span and offset up to 3rd order
- Temperature acquisition by internal sensor or external sensor diode
- Configurable output for
 - Ratiometric voltage output through 12-bit DAC, or
 - SENT mode (acc. SAE J2716, JAN2010)
- 40V Over-voltage (OVP) and -28V reverse voltage protections (RVP)
- Single-wire programming interface supports 3-wire sensor assembly and end-of-line calibration
- Wide range of diagnostic functions monitoring sensor and IC surveillance
- Wide operating temperature range: -40 to +150°C
- Automotive qualification according to AEC-Q100

Applications

- Resistive Bridge Sensors
- Pressure, Strain, Torque, Force

General Description

The IC E520.42 is a sensor signal processor (SSP) designed to amplify and treat the signal of resistive bridges. It comprises wide programming range and comprehensive diagnostic features.

A low-noise instrumentation amplifier with gain and off-set tuning capability amplifies the input signal to a level which fits the input range of a 14-bit delta-sigma AD-converter. After low-pass filtering the digitized input is compensated for thermal drifts of offset and gain in the digital domain. A temperature signal from an on-chip sensor or an external T-sensor is digitized and fed to the compensation calculator, too. The correction engine can compensate non-linearity in the signal to 3rd order. The digital output from the calculator engine is fed into a DA-converter driving an analogue voltage buffer providing a ratiometric output signal. Alternatively, a digital SENT output can be used instead of the analogue output. In configuration mode or diagnostic mode the output pin is used as a single-wire serial data interface for in-sys-tem calibration with only 3 wires to the outside. Calibration and configuration data for a specific sensor are stored in EEPROM. The IC includes self-test and dia-gnostics routines for the sensor bridge attached and the SSP itself. If faults occurs, they are indicated at the out-put as distinctive failure states.

Ordering Information

<table>
<thead>
<tr>
<th>Ordering-No.</th>
<th>Temp Range</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>E52042A52C</td>
<td>-40°C to +150°C</td>
<td>QFN20L4</td>
</tr>
<tr>
<td>E52042A24Y</td>
<td>-40°C to +150°C</td>
<td>Bare Die (Wafer BS)</td>
</tr>
</tbody>
</table>

Typical Application Circuit
Elmos Support

Headquarters
Elmos Semiconductor AG
Heinrich-Hertz-Str. 1
44227 Dortmund (Germany)
Phone: +49 (0) 231 / 75 49-100
Fax: +49 (0) 231 / 75 49-149
sales-germany@elmos.com
www.elmos.com

Sales and Application Support Office North America
Elmos NA. Inc.
sales-usa@elmos.com

Sales and Application Support Office China
Elmos Semiconductor Technology (Shanghai) Co., Ltd.
sales-china@elmos.com

Sales and Application Support Office Korea
Elmos Korea
sales-korea@elmos.com

Sales and Application Support Office Japan
Elmos Japan K.K.
sales-japan@elmos.com

Sales and Application Support Office Singapore
Elmos Semiconductor Singapore Pte Ltd.
sales-singapore@elmos.com